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If the surface of a viscous liquid is completely covered by an elastic structure, the hydroelastic
frequencies are shifted to a larger magnitude than those obtained with a free surface. It was
found that viscosity decreases the oscillation frequencies in comparison to the coupled hy-
droelastic frequencies of frictionless liquid and that a new phenomenon appears, exhibiting for
certain liquid height ranges h/a only aperiodic motion. With increasing angular and radial
mode numbers these aperiodic ranges of h/a decrease. Higher modes show larger damping. An
increase in the membrane tension decreases the aperiodic region, while an increase in the mass
of the membrane increases it. ( 2000 Academic Press
1. INTRODUCTION

IN MODERN TECHNOLOGY the trend toward thinner and lighter structures is predominant.
This leads to a high #exibility of the systems, which in many cases involve large capacity
containers for liquid or propellant storage, such as in storage tanks or containers in
airplanes, missiles, space vehicles, satellites or space stations. Strong interactions of this
propellant with the control system and the elastic structure may appear, endangering the
integrity of the system and the success of the mission. Thus, shifting these instability
frequencies is usually the only way to remedy the troublesome problem. This may be
achieved by considering the free liquid surface with a #exible structural member, such as
a membrane or a thin elastic plate, with various possible boundary conditions. In this way
a coupled frequency system is considered, possibly showing frequencies away from the
dangerous one of the original system. It is, of course, mandatory to know the magnitude of
the coupled frequencies. The "rst research activity in this area in recent years, involving a lot
of experiments and analyses (Miles 1958; Lindholm et al. 1962; Baron & Skalak 1962; Chu
1963; Saleme & Liber 1965; Tsui & Small 1968; Bhuta et al. 1964; Bhuta & Koval 1964;
Yamaki et al. 1984; Bauer et al. 1968a, b, 1972; Bauer & Siekmann 1969, 1971; Bauer 1970,
1973; Lakis & Paidoussis 1971; Stillman 1973; Jain 1974; Nash et al. 1980; Haroun &
Housner 1981; Balendra et al. 1982) on cylindrical tanks partially "lled with friction-
less liquid, emphasizes the importance of such hydroelastic investigations. Similar
9}9746/00/080917#20 $35.00/0 ( 2000 Academic Press
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investigations have been performed for rectangular containers with an elastic liquid surface
cover (Bauer 1981). Recently, the coupled frequencies of a circular cylindrical container with
an elastic cover and "lled with inviscid liquid has been determined by Bauer (1995). For
annular liquid systems under zero-gravity conditions the coupled frequencies have also
been determined (Bauer 1987).

In what follows, an investigation is presented of the coupled frequencies of a hydroelastic
system consisting of a circular cylindrical container, "lled with incompressible viscous
liquid, the liquid surface of which is covered by an elastic element, such as a #exible
membrane or an elastic plate with various boundary conditions. This means that the plate
could be clamped or #oated with free boundary conditions, be simply supported or guided,
such that the rim of the plate would be able to move up and down the wall of the cylinder,
exhibiting no shear forces. The case of an elastically supported boundary, where the edge
rotation would be opposed by spiral springs having the distributed sti!ness (K moment per
unit length), will also be mentioned.

2. BASIC EQUATION AND SOLUTION

A circular cylindrical container of diameter 2a (Figure 1) is "lled to a height h with an
incompressible and viscous liquid of density o and dynamic viscosity gN . The container wall
r"a and bottom of the container at z"!h are rigid, while the free surface at z"0 is
covered with a #exible membrane or an elastic plate. A list of symbols is given in the
Nomenclature (Appendix B). The plate may have various types of attachment to the
cylinder wall, such as clamped, simply supported, free, guided, or it may be elastically
supported. We assume small displacement and velocities such that the motion of the system
has to satisfy the Stokes equations (l"gN /o),
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Figure 1. Geometry and coordinate system.
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the continuity equation,
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if it is represented by a #exible membrane, or
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if the covering is by an elastic plate (Leissa 1969). In these equations ¹ is the tension of the
membrane, f(r, u, t) the de#ection, kP the mass per unit area, D"Ed3/[12(1!lN 2 )] the
#exural rigidity of the plate with d as its thickness, lN as Poisson's ratio and E as Young's
modulus of elasticity; t"ue

r
#teu#wk is the velocity, and the pressure distribution is

p(r, u, z, t)"p
0
!ogz#pN (r, u, z, t).

Actually, the plate exhibits displacement m, g and f, in the radial, circumferential and axial
(normal) direction, respectively. This would require the coupled equations in m, g and f, and
in addition the compatibility conditions, i.e. velocity matching condition between plate/
membrane and liquid (adherence and no cavitation), described by
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Assuming that the radial and circumferential de#ections are small in comparison with the
normal de#ection f(r, u, t) results in the boundary conditions at the plate
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from the stokes equations, equation (1),
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and from the continuity equation,
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For the solution of this system of coupled partial di!erential equations we assume
a solution of the form
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convenience.
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the solutions presented in equation (8). The solution of the above equations (6) and (7) yield
the ordinary coupled system of di!erential equations for A, C and D, i.e.
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The boundary conditions at the bottom, z"!h, are

u"v"w"0 at z"!h, (11d)

and at the elastic cover equation (4)
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for given m and n"1, 2, 3, 2.

2.1. MEMBRANE COVER

If the liquid surface is covered by a #exible membrane, we have to solve equation (3a) with
the boundary condition

f"0 at r"a. (13a)

This means that
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Boundary condition (13a) with AM
jmn
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introducing it into equation (15) and comparing with the results obtained from the
compatibility condition
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for given mO0 and n"1, 2, 2.
The vanishing coe$cient determinant of the (3n#1) equations (12b, c), (16) and (20)

represents the frequency equation for the determination of the damped (complex) coupled
frequencies of the membrane-viscous liquid system. If the determinant is truncated to
a "nite order we obtain the approximate values of the lower frequencies.

For axisymmetric oscillations, m"0, the expansion of I
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The vanishing determinant of the (3n#2) equations (22a, b), (12b, c) and (16) is the
axisymmetric frequency equation. It may be noticed that b2,(k*S2#g*)/¹* and that the
volume-preserving condition :a

0
f(r, t) r dr"0 is satis"ed by equation (22a).

2.2. PLATE COVER CASES

If the free liquid surface at z"0 is covered by an elastic plate, then equation (3b) has to be
satis"ed. We may distinguish di!erent boundary conditions at r"a:
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where lN is Poisson's ratio and the edge rotation is opposed by torsional springs having
a distributed sti!ness K (moment per unit length). Equations (1), (2), (3b), (11d, e) and (18),
with one of the above boundary conditions, (23)} (27), constitute the hydroelastic problem
for a container "lled with viscous liquid and a plate cover.

If the plate is clamped at r"a, we have to apply the boundary condition (23). The
solution of the equation of the plate,
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produces the solution (a2"(k*S2#g*)/D*, g*,ga3/l2)
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and
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and introducing them into the displacement equation (29), after comparison with the results
from the kinematic condition (18), yields "nally
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for n"1, 2, 2 and for mO0. Equations (30)} (32) and (12b, c) represent (3n#2) homo-
geneous algebraic equations, of which the vanishing determinant is the frequency equation
for the damped natural frequencies mO0 of the hydroelastic system.

For axisymmetric oscillation (m"0) the expansions of I
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which, when introduced in the solution of equation (28), i.e.
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for n"1, 2, 2. Equations (12b, c) for m"0, equations (34) and (35) and the boundary
conditions of the plate at r"a
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yield (3n#3) equations, of which the vanishing determinant represents the frequency
equation.
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For other boundary conditions the procedure for the solution of the coupled complex
frequencies is quite similar to that presented above for a clamped plate.

3. NUMERICAL EVALUATIONS AND CONCLUSIONS

Some of the previously obtained analytical results have been evaluated numerically. This
was performed for a membrane cover (Figure 1) in axisymmetric as well as asymmetric
motion. In this case, vibration characteristics of the present viscous liquid}membrane
coupled system are governed by the following system parameters: tension parameter
¹*,¹a/ol2, gravitational parameter g*,ga3/l2, density ratio k*,kP /oa, liquid height
ratio h/a, and vibration mode (m, n)"(circumferential, radial) wavenumber. The above
solution is especially of importance for small liquid height ratios h/a, for which most of the
liquid participates in the motion, and for which the adhesive e!ect of the container bottom
contributes a major part to the damped motion. This is due to the fact that the wave motion
penetrates only to a depth of the order of about one wavelength. For large liquid height
ratios, the lower part of the liquid merely performs a rigid-body motion. This suggests that
for such a case the adhesive conditions at the container bottom will produce only a small
e!ect on the overall damping of the liquid, and that in such a case the liquid damping is
mainly due to the e!ects of internal damping. For large h/a values the adhesive wall
conditions v"w"0 at r"a will be of paramount in#uence on the damping behaviour of
the liquid. These cases would require a di!erent approach to the solution, in which
v"w"0 at the container wall may no longer be neglected.

In previous investigations (Bauer & Eidel 1997a, b) for a viscous liquid in a rigid
container with a free liquid surface, the results show the important fact that, for small liquid
heights h/a, the liquid is no longer capable of performing damped oscillations, thus
exhibiting only an aperiodic motion, if disturbed. The decrease of the surface tension
parameter p*,pa/ol2 increases this aperiodic region and decreases the decay magnitude
and oscillation frequency for h/a values above the aperiodic region. With increasing gravity
parameter g*,ga3/l2 the aperiodic region decreases further, while in the oscillation region
the decay magnitude as well as the oscillation frequency increases. Higher modes have been
shown to exhibit signi"cantly stronger decay. For an in"nite region 04r(R, an aperi-
odic region exists for small wavelength j@1 as well as for very large wavelength jA1, which
decreases with increasing p* and increasing g*.

If the free liquid surface is covered by a #exible structure we have found that the region of
aperiodicity is much larger than for a liquid without such a cover. In the numerical
calculations, the number of unknown parameters n in the equations was taken to be three
(terms), which is the same number used in equation (17) for the Bessel}Fourier series.

In Figure 2 we show the uncoupled and coupled frequencies of the axisymmetric motion
m"0 of the membrane}liquid system as a function of the liquid height ratio h/a. The
dashed curves represent the coupled frequencies of the system for nonviscous liquid, while
the dotted curve is the uncoupled membrane frequency u*(m)

01
. The solid line curves represent

the complex coupled frequency of the viscous system, in which the thin solid line shows the
decay magnitude !d,!Re S and the thick solid line shows the oscillation frequency
u,Im S. First of all, we notice, that higher modes m"0; n"3, 4 show a larger decay
magnitude, meaning that they are damped out much faster than the fundamental mode
m"0, n"2. With a decrease in the liquid height, the oscillation frequency u decreases,
while the decay magnitude (!d) increases, indicating a faster decay. For frictionless liquid,
which exhibits for all liquid height ratios h/a oscillatory behaviour, we detect a larger
oscillation frequency. As may be noticed, the mode m"0 and n"1 does not exist, since the
liquid would then not satisfy the continuity equation, i.e. the volume preserving condition.



Figure 2. Coupled and uncoupled frequencies of axisymmetric motion for m"0; ¹*"103, g*"104 and
k*"10~2: } } } }, inviscid coupled frequencies; --------, uncoupled membrane frequency u*(m)

01
; ', double roots S

0n
(n"2, 3, 4).
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We detect in Figure 2 that for m"0, n"2 the aperiodic region is located below
h/a+0)195, while the mode n"3 exhibits a smaller region h/a40)105. The axisymmetric
mode m"0, n"4 is in the range 04h/a(0)080 performing only an aperiodic (non-
oscillatory) motion. At the decay values !d, we have emphasized by a dot, the location of
the double root, where the oscillation ceases to exist. It may be remarked that the course
of the two aperiodic roots in these ranges smaller than (h/a)

$06"-% 3005
are not presented. One

of them will exhibit a large magnitude (strong decay), while the other will show a smaller
value (weaker) decay. The contribution of both, however, will disappear as time goes on. In
Figure 3 we represent only the oscillatory frequency of the hydroelastic system, where the
dash-dotted lines are the uncoupled natural frequencies of the liquid u*(l)

0j
, j"1, 2, 3.

The membrane frequency u*(m)
01

is shown as the dotted line. Figure 4 just shows the case of
the coupled complex frequency for m"0, n"2 versus the height ratio h/a.

The results for the asymmetric modes m"1 (circumferential nodal line at u"$n/2)
and radial modes n"1, 2, 3 are presented in Figure 5 for ¹*,¹a/ol2"103, g*,ga3/
l2"104, and k*,kP /oa"10~2. In the liquid height range presented, 04h/a40)5, only
aperiodic motion is possible for the radial mode n"1. The radial mode n"2 exhibits in
04h/a(0)135 an aperiodic motion, while for n"3 this range will be below h/a+0)09. In
Figure 5, we have again indicated the location of the double roots, S

1n
(n"2, 3). At this

height ratio location h/a the mode ceases to oscillate. For smaller values h/a two negative
real roots S appears (not shown in the "gure) which indicate that only aperiodic motion is
possible. The double root for the mode m"n"1 is outside the range of this "gure. The
aperiodic branches are not shown.

For the circumferential mode m"2 with two radial nodal lines, one at u"(n/4, 5n/4)
and the other at u"(3n/4, 7n/4), the numerical results are shown in Figure 6 for the same
parameters ¹*, g* and k*. Again we notice that the mode m"2, n"1, if disturbed, is only
able to perform an aperiodic motion, for the total indicated range 04h/a40)5. The two



Figure 3. Coupled and uncoupled oscillation frequencies of axisymmetric motion for m"0; ¹*"103,
g*"104 and k*"10~2: } } } }, inviscid coupled frequencies; } - } - } -, uncoupled liquid frequency u*(l)

0j
; --------,

uncoupled membrane frequency u*(m)
01

.

Figure 4. Coupled complex frequency for axisymmetric motion for m"0, n"2; ¹*"103, g*"104 and
k*"10~2.
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aperiodic branches are not presented in the "gure. For the radial modes n"2 and 3 we
notice an aperiodic range for h/a(0)108 and h/a(0)08, respectively.

For higher circumferential modes m the lowest radial mode n"1 becomes "nally
oscillatory in the range 04h/a40)5. For m"3 (Figure 7) the system performs a decaying



Figure 5. Coupled complex frequency for asymmetric motion for m"1; ¹*"103, g*"104 and k*"10~2;
} }} }, inviscid coupled frequencies; --------, uncoupled membrane frequency u*(m)

11
; ', double roots S

1n
(n"2, 3).

Figure 6. Coupled complex frequency for mode m"2; ¹*"103, g*"104 and k*"10~2; } }} }, inviscid
coupled frequencies; ', double roots S

2n
(n"2, 3).
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oscillation for a liquid height ratio h/a'0)16. The second radial mode n"2 exhibits larger
decay, larger oscillation frequency and a small aperiodic range 04h/a(0)093. This
aperiodic range decreases further to values 04h/a(0)073 for the mode m"3, n"3.

For better interpretation of the vibration modes in Figure 8 are shown the mode shapes
for axisymmetric motion m"0. We notice that mode shape of the vibration mode m"0, n"2



Figure 7. Coupled complex frequency for mode m"3; ¹*"103, g*"104 and k*"10~2; } }} }, inviscid
coupled frequencies; ', double roots S

3n
(n"1, 2, 3).

Figure 8. Vibration modes m"0; ¹*"103, g*"104 and k*"10~2; (a) n"2; (b) n"3; (c) n"4.
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exhibits hardly any di!erence for the treated liquid height ratios h/a"0)1, 0)15, 0)2. For the
mode m"0, n"3 we observe already small di!erences, while for mode m"0, n"4
the di!erences become quite obvious. With increasing liquid height ratio h/a, the mode
shape exhibits larger values for the larger h/a-value close to the wall, while towards the
centre line r"0 it is smaller than those for smaller liquid height ratio.

Similar results are given in Figure 9 for m"1, 2 and 3, respectively. For h/a"0)4
[Figure 9(a)] the mode shapes of the modes m"1, 2, 3, n"1 exhibit no di!erence, while
for smaller h/a-values distinct shifting of extreme values and nodal lines appear [Figure
9(b, c)].

For a deeper insight into the morphology of the roots of the motion of the hydroelastic
system, we have determined the double-roots as a function of circumferential modal number
m, radial modal number n and the liquid height ratio h/a for the range 04h/a40)2
(Figure 10). These results indicate where the system ceases to oscillate, i.e. where it is only
capable to perform an aperiodic motion. It may be seen that the double-root of the mode
n"1 is not in the ranges of h/a and m(2 presented, and one may also assume from
the slope of the curve for n"1, that m"0, n"1 will never reach an intersection with the
ordinate h/a, i.e. that this mode will not exist, as we know from the volume preserving
condition (Figure 8).

In Figure 10, we also detect that the aperiodic region is exhibiting decreased magnitude
for a higher membrane tension parameter ¹*"104. Since the aperiodic region represents
a new and interesting phenomenon in the coupled liquid}structure system, we have devoted
a little more time to the evaluation of its magnitude depending upon the various parameters
Figure 9. Vibration modes mO0; ¹*"103, g*"104 and k*"10~2; (a) n"1, h/a"0)4; (b) n"2, h/a"0)3;
(c) n"3, h/a"0)2.



Figure 10. Complex double root, below which only aperiodic motion is possible (for modes m"0, 1, 2, 3, 4),
g*"104, k*"10~2: 00, ¹*"103; } } }}, ¹*"104.

Figure 11. Complex double root, below which only aperiodic motion is possible (for modes m"0, 1, 2, 3, 4),
¹*"103, k*"10~2; }} } }, g*"103; 00, g*"104.
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of the system, the circumferential mode numbers m and the radial mode numbers n. We
notice "rst of all that the region of aperiodic motion decreases with an increase of both the
circumferential mode number m and the radial mode number n. In addition, an increase in
the membrane tension reduces the range of aperiodicity. The in#uence of the gravity
parameter g*,ga3/l2 is presented in Figure 11 for g*"103 and 104. The results show, for
a membrane tension parameter of ¹*"103 and mass parameter k*"0)01, that the
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increase in g* increases the aperiodic region, which is more pronounced for lower radial
modes n.

The in#uence of the mass parameter k*,kP /oa upon the magnitude of the aperiodic
region is presented in Figure 12, for ¹*"103, g*"103 and k*"0)01 and 0)05. It shows
that with increasing k* the aperiodic region increases for all modes.
Figure 12. Complex double root, below which only aperiodic motion is possible (for modes m"0, 1, 2, 3, 4),
¹*"103, g*"103; 00, k*"0)01; } } } }, k*"0)05.

Figure 13. Coupled complex frequency for mode m"1, n"1; ¹*"103, g*"103; 00, k*"0)01; }} } },
k*"0)05.
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Finally, we investigated the e!ect of increasing mass parameter k* upon the fundamental
damped frequency for ¹*"103, g*"103 and the mode m"1, n"1. It was found that
essentially an increase in the mass parameter k*,kP /oa yields an increase of the oscillation
frequency and an increase of the decay magnitude (Figure 13).

4. CONCLUSION

From the above results one may conclude the following.

(a) Increasing the mode number results in a decrease in the aperiodic range for small
liquid height ratio h/a. This is also true for the circumferential mode number m as well as for
radial mode number n.

(b) The e!ect of viscosity is to decrease the oscillation frequency in comparison with the
coupled hydroelastic frequencies of frictionless liquid.

(c) Decreasing liquid height ratio h/a increases the decay magnitude and decreases the
oscillation frequency. Higher modes exhibit stronger damping and disappear as time goes
on.

(d) An increase in the membrane tension parameter ¹* decreases the aperiodic region
considerably.

(e) An increase in the gravity parameter g*,ga3/l2 increases the aperiodic region, the
increase being more pronounced for lower modes.

(f ) An increase in the mass parameter k*,kP /oa increases the aperiodic region, and in
the damped oscillatory region increases the oscillation frequency as well as the decay
magnitude.

It may be mentioned here that, for higher liquid height ratio h/a, the theory presented
here will yield only approximate values. This is due to the fact that the liquid motion
penetrates only below the membrane surface to a depth of about one wavelength, while the
lower part of the liquid will remain mainly at rest. For low liquid ratio h/a40)5 these
results, satisfying all bottom-adhesive conditions, and only the normal side-wall condition
(showing only a small side-wall area), yield good results. For large height ratio h/a'0)5,
the contribution of the adhesive condition at the side-wall will contribute the major part of
the damping. For such cases a new method is being developed at the present time and will
be presented in due course.

For the case with a cover plate the above procedure will be similar.
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APPENDIX A: UNCOUPLED FREQUENCIES

A.1. MEMBRANE FREQUENCY

Solving the uncoupled membrane equation (3a) we obtain the natural frequencies

u(m)
mn

"

eN
mn
a S

¹

k
, m"0, 1, 2, 2, n"1, 2, 3, 2,

where eN
mn

are the roots of J
m
(eN
mn

)"0. This, for reasons of comparison with the coupled frequencies
u*"ua2/l, yields,

u*(m)
mn

"eN
mn S

¹*

k*
.
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For the circular plate the natural frequencies are

u(p)
mn
"

j2
mn
a2 S

D

k
,

where j
mn

are the eigenvalues. This yields

u*(p)
mn

"j2
mn S

D*

k*
, m"0, 1, 2, 2, n"1, 2, 3, 2.

In the case of a clamped plate, the eigenvalues j
mn

are obtained from

J
m
(j)I

m`1
(j)#I

m
(j)J

m`1
(j)"0

and are presented in the form of a table for n"1, 2, 2 and m"0, 1, 2, 2 in Bauer (1995).
For a simply supported plate, j

mn
is obtained from the expression

J
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while for a free plate it is obtained from
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For a guided plate, j
mn

is obtained from
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m
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and for an elastically supported plate the equation to be solved is
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For reasons of comparison one could write Ka/D,K*/D*, where K*,K/ol2 and D*,D/ol2a.

A.2. SLOSHING FREQUENCY

The uncoupled natural frequencies of the liquid are given by

u2(l)
mn

"

ge
mn
a

tanhAemn

h

aB , m"0, 1, 2, 2, n"1, 2, 2,
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where e
mn

are the roots of J@
m
(e
mn

)"0. This could also be written as

u*2(l)
mn

"g*e
mn

tanhAemn

h

aB .

APPENDIX B: NOMENCLATURE

A(z), C(z), D(z) coe$cients of equation (8)
A

1mn
}A

4mn
coe$cients in equation (11)

a radius of tank
D #exural rigidity of plate
D* ,D/ol2a
E Young's modulus of plate
g gravitational acceleration
g* ,ga3/l2
h liquid height
I
m

modi"ed Bessel function of order m
i imaginary unit
J
m

Bessel function of the "rst kind of order m
K distributed sti!ness of plate
K* ,K/ol2
M

r
moment

P*
0

constant
p pressure
p
0

static pressure
r, u, z coordinate system
S ,sa2/l
s characteristic index
¹ tension of membrane
¹* ,¹a/ol2
t time
u, v, w velocity components of liquid
;

m
, <

m
, =

m
coe$cients

<
r

shearing force
a parameter a2,(k*S2#g*)/D*
b parameter b2,(k*S2#g*)/¹*
d plate thickness
e
mn

roots of J@
m
(e)"0

eN
mn

roots of J
m
(eN )"0

gN dynamic viscosity of liquid
j wavelength
j
mn

eigenvalue of circular plate
k
mn

parameter de"ned by equation (10)
kN
mn

parameter"ak
mnkP mass/unit area of membrane or plate

k* ,kP /oa
l ,gN /o
lN Poisson ratio of plate
m, g, f displacement components of membrane or plate
o density of liquid
p surface tension
p* ,pa/ol2
/, t de"ned by equation (5a)
u(p)

mn
uncoupled natural frequency of circular plate

u(l)
mn

uncoupled natural frequency of liquid
u(m)

mn
uncoupled natural frequency of membrane

u*(m)
mn

uncoupled natural frequency of membrane
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